Communication: Activation energy of tension-induced pore formation in lipid membranes.
نویسندگان
چکیده
Tension plays a vital role in pore formation in biomembranes, but the mechanism of pore formation remains unclear. We investigated the temperature dependence of the rate constant of constant tension (σ)-induced pore formation in giant unilamellar vesicles of lipid membranes using an experimental method we developed. By analyzing this result, we determined the activation energy (Ua) of tension-induced pore formation as a function of tension. A constant (U0) that does not depend on tension was found to contribute significantly to Ua. Analysis of the activation energy clearly indicated that the dependence of Ua on σ in the classical theory is correct, but that the classical theory of pore formation is not entirely correct due to the presence of U0. We can reasonably consider that U0 is a nucleation free energy to form a hydrophilic pre-pore from a hydrophobic pre-pore or a region with lower lateral lipid density. After obtaining U0, the evolution of a pre-pore follows a classical theory. Our data provide valuable information that help explain the mechanism of tension-induced pore formation in biomembranes and lipid membranes.
منابع مشابه
Electrostatic interaction effects on tension-induced pore formation in lipid membranes.
We investigated the effects of electrostatic interactions on the rate constant (k(p)) for tension-induced pore formation in lipid membranes of giant unilamellar vesicles under constant applied tension. A decrease in salt concentration in solution as well as an increase in surface charge density of the membranes increased k(p). These data indicate that k(p) increases as the extent of electrostat...
متن کاملThe free energy of nanopores in tense membranes.
Membrane nanopores are central players for a range of important cellular membrane remodeling processes as well as membrane rupture. Understanding pore formation in tense membranes requires comprehension of the molecular mechanism of pore formation and the associated free energy change as a function of the membrane tension. Here we propose a scheme to calculate the free energy change associated ...
متن کاملMolecular mechanism of Peptide-induced pores in membranes.
We suggest a physical mechanism by which antimicrobial peptides spontaneously induce stable pores in membranes. Peptide binding to a lipid bilayer causes an internal stress, or internal membrane tension, that can be sufficiently strong to create pores. Like detergents, peptides have a high affinity for the rim of the pore. Binding to the rims reduces the line tension and decreases the number of...
متن کاملPore formation in fluctuating membranes.
We study the nucleation of a single pore in a fluctuating lipid membrane, specifically taking into account the membrane fluctuations, as well as the shape fluctuations of the pore. For large enough pores, the nucleation free energy is well-described by shifts in the effective membrane surface tension and the pore line tension. Using our framework, we derive the stability criteria for the variou...
متن کاملDynamics of fusion pores connecting membranes of different tensions.
The energetics underlying the expansion of fusion pores connecting biological or lipid bilayer membranes is elucidated. The energetics necessary to deform membranes as the pore enlarges, in some combination with the action of the fusion proteins, must determine pore growth. The dynamics of pore growth is considered for the case of two homogeneous fusing membranes under different tensions. It is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 143 8 شماره
صفحات -
تاریخ انتشار 2015